- 11. The method of claim 10, further comprising the step of:
 - calculating the pressure applied at each point being touched.
 - 12. The method of claim 10, wherein the:
 - pressure sensing device is selected from the group consisting of force sensing resistors, piezoelectric sensors and capacitive touch sensors.
 - 13. The method of claim 10, wherein the:

pressure sensing devices comprise strain gauges.

14. The method of claim 10, wherein the:

processor is a digital signal processor (DSP).

15. The method of claim 10, wherein the:

pressure sensors are arranged in a matrix configuration.

16. A method of claim 13, wherein the:

sensors are arranged in a matrix.

17. The method of claim 10 wherein the:

processor performs an algorithm comprising the steps of:

- a. sampling the signals from the plurality of strain gauges;
- b. calculating locations of single or multiple touches on the touch pad;
- c. calculating the amount of pressure exerted on each touch on the touch pad;
- d. outputting calculation data from the algorithm to control the application.

- 18. The method of claim 10 further comprising the step of:
- identifying the strain gauge positions with the formula: (a_i, b_i), i=1, 2, ..., N, where N is the number of strain gauges, and the measured pressures of strain gauges are p_i, i=1, 2, ..., N;
- programming the positions of the touch points on multipoint touch pad as (x_j, y_j) , j=1, 2, ..., M, where M is a known number of the touch points (less than N), but x_j and y_j are unknown and will be determined by the calculations of the algorithm;
- quantifying the pressures of the touch points with the formula z_j, j=1, 2, ..., M, using the algorithm;
- transfer sampling data from a sampling module to a calculation module;
- calculate the position and pressure of the touch points using the following mathematical formula: $p_i = w(|(x_1, y_1) (a_i, b_i)|)z_1 + w(|(x_2, y_2) (a_i, b_i)|)z_2 + \dots + w(|(x_M, y_M) (a_i, b_i)|)z_M, i = 1, \dots, N;$ where $w(|(x_i, y_j) (a_i, b_i)|)$ is a weighting factor that reflects the effect of pressure z_j on p_j using the algorithm;
- calculate that: w(|(x_i, y_j)-(a_i, b_i)|) is a function of the distance between the touch point (x_j, y_j) and the sensor location (a_i, b_i) using the algorithm;
- calculates that $|(x_j, y_j)-(a_i, b_i)|=\operatorname{sqrt}((x_j-a_i)^*(x_j-a_i)-(y_j-b_i)^*(y_j-b_i))$ as being the distance between the touch point of j and the sensor i using the notation "sqrt" as representing square root using the algorithm.

* * * * *